

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/347791485>

Comparison Between PS and SBAS InSAR Techniques in Monitoring Shallow Landslides

Chapter · January 2021

DOI: 10.1007/978-3-030-60311-3_17

CITATIONS
14

READS
2,214

5 authors, including:

Xue Chen

University of Padova

11 PUBLICATIONS 121 CITATIONS

[SEE PROFILE](#)

Giulia Tessari

Sarmap

43 PUBLICATIONS 220 CITATIONS

[SEE PROFILE](#)

Massimo Fabris

University of Padova

99 PUBLICATIONS 1,159 CITATIONS

[SEE PROFILE](#)

Vladimiro Achilli

University of Padova

126 PUBLICATIONS 703 CITATIONS

[SEE PROFILE](#)

Metadata of the chapter that will be visualized in SpringerLink

Book Title	Understanding and Reducing Landslide Disaster Risk	
Series Title		
Chapter Title	Comparison Between PS and SBAS InSAR Techniques in Monitoring Shallow Landslides	
Copyright Year	2021	
Copyright HolderName	Springer Nature Switzerland AG	
Corresponding Author	Family Name Particle Given Name Prefix Suffix Role Division Organization Address Email	Chen Xue Tessari Giulia Fabris Massimo Achilli Vladimiro
	Department of Geosciences University of Padua via G. Gradenigo, 35131, Padova, Italy chenxue@cugb.edu.cn	
Author	Family Name Particle Given Name Prefix Suffix Role Division Organization Address Email	
	Sarmap SA Via Stazione 52, 6987, Caslano, Switzerland giulia.tessari@sarmap.ch	
Author	Family Name Particle Given Name Prefix Suffix Role Division Organization Address Email	
	Department of Civil, Environmental and Architectural Engineering University of Padua via G. Gradenigo, 35131, Padova, Italy massimo.fabris@unipd.it	
Author	Family Name Particle Given Name Prefix Suffix	

	Role	
	Division	Department of Civil, Environmental and Architectural Engineering
	Organization	University of Padua
	Address	via G. Gradenigo, 35131, Padova, Italy
	Email	vladimiro.achilli@unipd.it
Author	Family Name	Floris
	Particle	
	Given Name	Mario
	Prefix	
	Suffix	
	Role	
	Division	Department of Geosciences
	Organization	University of Padua
	Address	via G. Gradenigo, 35131, Padova, Italy
	Email	mario.floris@unipd.it
Abstract	The main aim of this study is to compare the two commonly used multi-temporal interferometric synthetic aperture radar (InSAR) techniques, i.e. permanent scatterers (PS) and small baseline subset (SBAS), in monitoring shallow landslides. PS and SBAS techniques have been applied to ascending and descending Sentinel-1 SAR data to measure the rate of surface deformation and the displacement time series in the Rovigiana area (NE Italian pre-Alps) from 2014 to 2019. As expected, PS results cover only urban areas, while those obtained by SBAS cover up to the 85% of the investigated area. Velocity maps obtained by the two techniques show that some sectors of the investigated slope are affected by active shallow landslides which threaten the stability of buildings, walls and road network. The comparison between ascending and descending velocity maps along the satellite line of sight reveals the presence of a horizontal component in the east–west direction which is consistent with the landslide kinematic. The analysis of the displacement time series shows that, in the case of linear deformation trends, PS and SBAS results are similar, whereas, in the case of high oscillations and non-linear behavior, SBAS technique can provide a better estimation of the displacements. Besides, SBAS provides smoother and less noisy displacement time series. However, both the techniques showed their high capability in monitoring the evolution of the landslides, which is crucial for the implementation of effective risk prevention and mitigation strategies. To deep investigate the differences between the two techniques, other geomatic methodologies, based on global navigation satellite system and terrestrial laser scanning, should be used.	
Keywords	DInSAR techniques - PS - SBAS - Sentinel-1 - Shallow landslides - Pre-alps - Italy	

Comparison Between PS and SBAS InSAR Techniques in Monitoring Shallow Landslides

Xue Chen, Giulia Tessari, Massimo Fabris, Vladimiro Achilli, and Mario Floris

Abstract

The main aim of this study is to compare the two commonly used multi-temporal interferometric synthetic aperture radar (InSAR) techniques, i.e. permanent scatterers (PS) and small baseline subset (SBAS), in monitoring shallow landslides. PS and SBAS techniques have been applied to ascending and descending Sentinel-1 SAR data to measure the rate of surface deformation and the displacement time series in the Rovegliana area (NE Italian pre-Alps) from 2014 to 2019. As expected, PS results cover only urban areas, while those obtained by SBAS cover up to the 85% of the investigated area. Velocity maps obtained by the two techniques show that some sectors of the investigated slope are affected by active shallow landslides which threaten the stability of buildings, walls and road network. The comparison between ascending and descending velocity maps along the satellite line of sight reveals the presence of a horizontal component in the east–west direction which is consistent with the landslide kinematic. The analysis of the displacement time series shows that, in the case of linear deformation trends, PS and SBAS results are similar, whereas, in the case of high oscillations and

non-linear behavior, SBAS technique can provide a better estimation of the displacements. Besides, SBAS provides smoother and less noisy displacement time series. However, both the techniques showed their high capability in monitoring the evolution of the landslides, which is crucial for the implementation of effective risk prevention and mitigation strategies. To deep investigate the differences between the two techniques, other geomatic methodologies, based on global navigation satellite system and terrestrial laser scanning, should be used.

Keywords

DInSAR techniques • PS • SBAS • Sentinel-1 • Shallow landslides • Pre-alps • Italy

Introduction

Differential interferometric synthetic aperture radar (DInSAR) is a powerful remote sensing technique for continuous detection and monitoring of land surface deformation, thanks to its cost-effectiveness and high-precision in the analysis of wide areas. In particular, this technique is capturing the attention of the landslide community in the last decades (Wasowski and Bovenga 2014). DInSAR uses a pair of complex-values SAR images, acquired at different time and from slightly different orbital positions, to generate an interferogram. The phase difference obtained from the two acquisitions can be converted into surface land displacement along the satellite line of sight (LOS) (Zeni et al. 2014). Multi-temporal interferometry methods, i.e. permanent scatterers (PS) (Ferretti et al. 2000, 2001; Crosetto et al. 2016) and small baseline subset (SBAS) (Berardino et al. 2002; Casu et al. 2006), overcome the limitation of DInSAR phase disturbance, such as atmospheric artifacts and topographic inaccuracies, leading to successful applications in

X. Chen (✉) · M. Floris
Department of Geosciences, University of Padua, via G. Gradenigo, 35131 Padova, Italy
e-mail: chenxue@cugb.edu.cn

M. Floris
e-mail: mario.floris@unipd.it

G. Tessari
Sarmap SA, Via Stazione 52, 6987 Caslano, Switzerland
e-mail: giulia.tessari@sarmap.ch

M. Fabris · V. Achilli
Department of Civil, Environmental and Architectural Engineering, University of Padua, via G. Gradenigo, 35131 Padova, Italy
e-mail: massimo.fabris@unipd.it

V. Achilli
e-mail: vladimiro.achilli@unipd.it

69 landslide investigations (e.g. Colesanti et al. 2003; Hilley
70 et al. 2004).

71 PS-InSAR technique generates differential interferograms
72 with one common master identifying persistent point-wise
73 reflectors, such as manmade structures and rocks. It is gen-
74 erally applied to analyse deformation affecting urban areas,
75 where the number of persistent scatterers is higher than in
76 natural environments. This technique considers a deforma-
77 tion model (usually a linear model), avoiding phase filtering
78 and unwrapping, simplifying the processing chain compared
79 to the SBAS one.

80 SBAS-InSAR technique relies on a redundant network of
81 image pairs, with short spatial and moderate temporal baseline,
82 detecting the temporal evolution of the surface deformations
83 and increasing the spatial coverage, especially over nonurban
84 areas. This technique extracts the deformation time series from
85 the observed filtered and unwrapped phases. Considering the
86 much higher number of generated interferograms, this tech-
87 nique is more time-consuming from the computational view-
88 point and for the operator intervention too.

89 In this paper, a comparison between the results obtained
90 from PS and SBAS processing of Sentinel-1 data is reported,
91 in terms of velocity maps and displacement time series,
92 covering the time period 2014–2019. The analysis was
93 carried out in an area affected by shallow landslides, located
94 in the north-eastern Italian pre-Alps. In this area, previous
95 studies (Tessari et al. 2017) have shown how interferometric
96 analysis of several SAR datasets, including Sentinel-1A,
97 represent a useful tool to investigate the instability
98 phenomena.

99 Study Area

100 The study area, named Rovegliana, includes 4.2 km² wide
101 unstable slopes located in the north-eastern Italian pre-Alps
102 (Fig. 1). Several small agglomerates of houses are placed
103 along the slopes facing to the Agno torrent. Elevation ranges
104 from 800–900 m to 400–330 m a.s.l. and the average slope
105 gradient is about 21 degrees.

106 The bedrock of the slopes is constituted by two heteropic
107 formations deposited during middle Triassic: *Recoaro*
108 limestone and *Gracilis* Formation. The first one outcrops in
109 the upper part of the slopes and is composed by limestones,
110 marly and dolomitic limestones. The second one outcrops in
111 the middle and lower part of the slopes and consists of an
112 alternance of sandy and marly limestones, interbedded with
113 evaporitic dolomites. These formations are highly fractured
114 due to the tectonic events that occurred during the Upper
115 Triassic-Jurassic and the Alpine orogeny.

116 The whole area is prone to instabilities of alluvial and
117 colluvial depositions resulting in large quantities of debris
118 material with thickness up to 10 m. The grain size of the

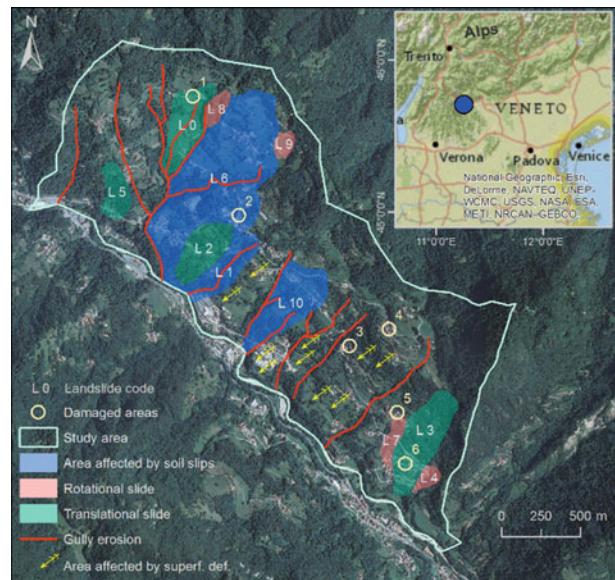


Fig. 1 Location of the study area (inset) and map of the main gravitational and erosional processes. The most damaged areas due to instability phenomena are indicated

debris is very heterogeneous, from millimetric to decametric clasts immersed in a clayey and silty sand matrix. Locally, morphological evidences, such as bumps, dips and sudden changes in the slope, reveal the presence of large boulders in the debris, dislocated from the calcareous formation located at the top of the area.

The slope instabilities were identified through in situ investigations, aerial photos interpretation and remote sensing surveys (GPS and DInSAR). They consist of translational and rotational slides, soil slips and superficial slow deformations (creep) which involve the debris cover (Fig. 1). Slide phenomena and soil slips have a high state of activity and mainly occur in the wet season (Autumn) after rainfall events (Toaldo et al. 2016; Tessari et al. 2017). Superficial deformations have displacement rates of few millimetres per year estimated by previous remote sensing surveys. They do not show clear geomorphological evidences, but movements result in damages (cracks) to buildings, walls and road network, and upward curvature of trees.

139 Data and Methods

140 Ground deformation over the study area has been measured
141 using both ascending and descending Sentinel-1 C-band
142 SAR images, acquired in interferometric wide swath mode,
143 with a 12-day or 6-day revisit time and a spatial resolution of
144 about 15 m. 216 images acquired from ascending track 117
145 (30 March 2015 to 04 November 2019) and 233 images
146 acquired from descending track 95 (24 October 2014 to 03
147 November 2019) have been processed.

149 The multi-temporal process of Sentinel-1 data has been
150 performed through SARscape COTS, using both PS and
151 SBAS algorithms. These approaches provide their best per-
152 formances on different types of land cover and objects, point
153 targets and distributed targets respectively (Pasquali et al.
154 2014).

155 The PS technique analyses the deformation of point
156 scatterers with high temporal stability of the backscattered
157 signal. It establishes a deformation model based on the phase
158 difference of each pixel individually, without performing any
159 phase unwrapping. This leads to preserving the maximum
160 spatial resolution and the total independency of adjacent
161 pixel measurements.

162 The SBAS technique measures deformations of dis-
163 tributed targets, e.g. sparsely urbanized areas and open
164 fields. In fact, the volume decorrelation typical of natural
165 distributed targets is reduced through an adaptive filtering
166 step. The SBAS processing chain has been applied using an
167 intermittent approach, which consists of extending the
168 analysis to those resolution cells where the information has
169 some temporal gaps because of the signal decorrelation,
170 leading to coherence values smaller than the established
171 acceptable threshold, equal to 0.3 in our analysis. Therefore,
172 SBAS intermittent approach allows to spatially extend the
173 final results. However, the results reliability is guarantee
174 through two parameters establishing the minimum accept-
175 able percentages of interferograms and images, to make sure
176 that most of the deformation temporal information is pre-
177 served and directly calculated from the interferograms and
178 using interpolation in the limited decorrelated temporal
179 intervals. In detail, the analyses considered 60% as the
180 percentage of interferograms and 95% as the minimum valid
181 acquisitions, which means that pixels covering at least 60%
182 interferometric connections of the whole connections and
183 95% acquisitions of all the acquisitions are maintained in the
184 final result. All the pixels which were not respecting this
185 controls have been discarded.

186 PS connection sets one image as the master, which is
187 usually in the middle of the temporal and spatial distribution
188 of acquisitions, in order to maintain a high coherence with
189 most of the other images. The master image acquisitions for
190 ascending and descending are 25 January 2018 and 25
191 November 2017, respectively. For SBAS connections, we
192 set 36 days and 100 m as the temporal and spatial baselines
193 constraints. In this case, we had to manually insert additional
194 connections before the launch of Sentinel-1B, because of the
195 low acquisition frequency of 12 days. Then, about 900 pairs
196 were obtained.

197 We compared the results from PS- and SBAS- InSAR
198 techniques considering spatial coverages, velocity distribu-
199 tion, capability of identifying landslides, and displacement
200 time series.

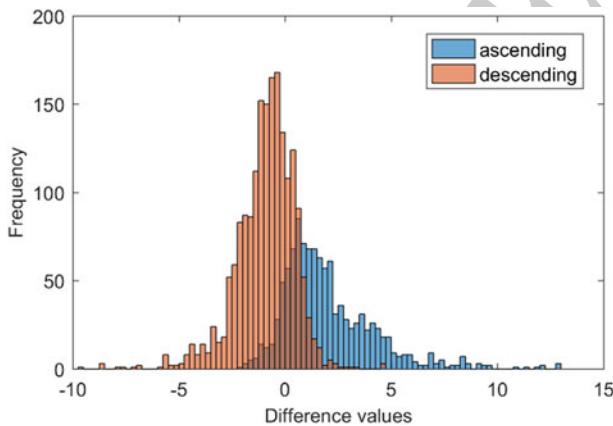
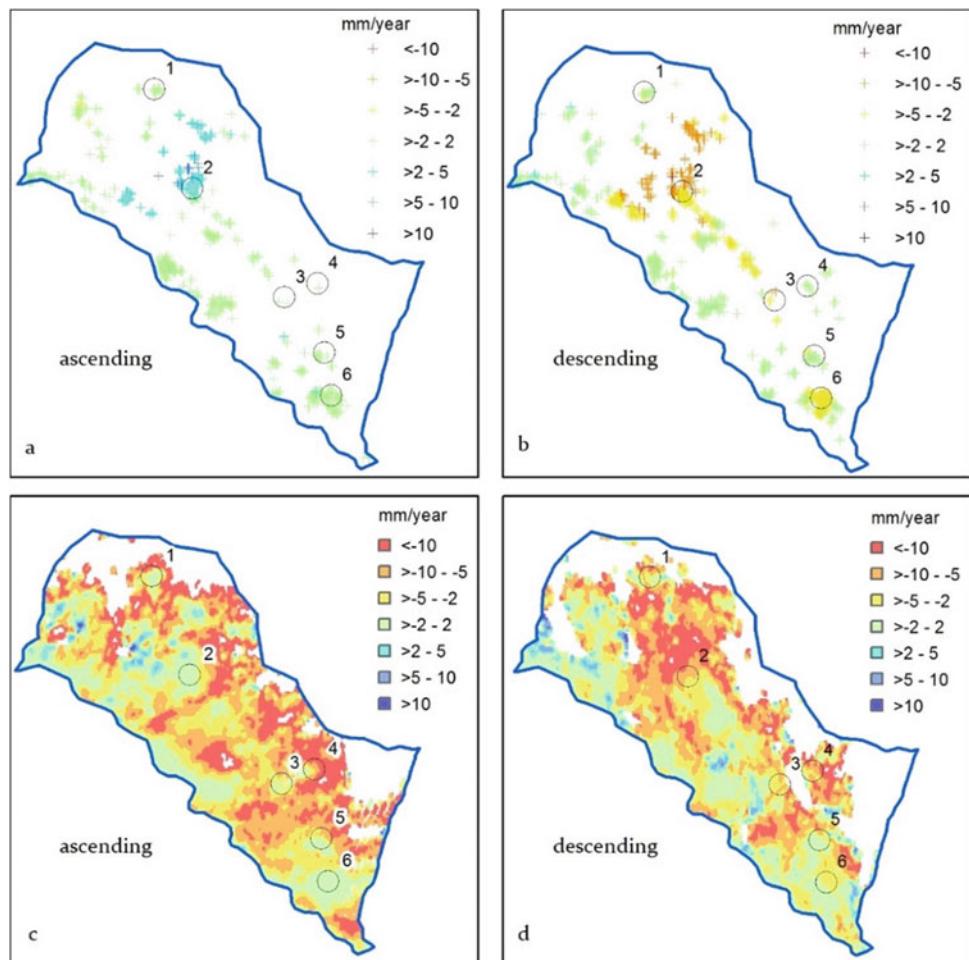
Results

201 Ascending and descending velocity maps derived by PS and
202 SBAS techniques are shown in Fig. 2. PS and SBAS results
203 show different spatial coverage and quite similar displace-
204 ment rates in the coinciding points.

205 PS points are mainly located in the small urban
206 agglomerates or roads (see Figs. 2a, b and 1). The density of
207 PS points in the entire study area is 262 per kilometres in
208 ascending orbit and 437 per kilometres in descending. In the
209 landslide areas, the density is higher, with 413 and 767 PS
210 per kilometres in ascending and descending orbits, respec-
211 tively. SBAS results cover most of the study area, providing
212 information not only over anthropic structures but also on
213 non-urban areas.

214 Results derived by the [processing](#) of ascending dataset
215 cover the 85% (3.7 km) of the entire study area, those
216 derived by descending track cover the 76% (3.2 km).
217 Landslide areas are almost totally covered by both ascending
218 and descending SBAS results.

219 The comparison between displacement rates estimated by
220 the two techniques in all the coinciding points is reported in
221 Fig. 3. The mean and standard deviation of difference values
222 (SBAS velocity minus PS ones) are 1.99 and 2.17 for
223 ascending, and -0.91 and 1.39 for descending datasets,
224 respectively.



225 Considering the result coverage in the landslide areas, just
226 one landslides (L8) doesn't contain any PS both in ascending
227 and descending orbit, while the others contain 4 or more PS
228 with low variability in the estimated velocities (Tables 1 and 2).
229 In the case of SBAS, more than 80% of landslide areas are
230 covered by the results of the processing. In this case, the esti-
231 mated velocities present quite high variability for each land-
232 slide and the mean values are generally significantly higher
233 than those calculated by PS.

234 To compare the results from the two techniques, the
235 displacement time series obtained by the processing of
236 descending dataset in the most damaged areas have been
237 considered (Fig. 4). In general, time series trends and shapes
238 are very similar (Fig. 4b, c, and f), but SBAS series appear
239 smoother and less noisy. PS and SBAS time series plotted in
240 areas 1 and 4 (Fig. 4a and d) show differences in the dis-
241 placement trends due to a divergence in deformation rate in
242 the first part of the monitoring period.

Discussion

243 As expected, the SBAS technique provided a displacement
244 rate estimation for a larger part of the study area [compare](#) to
245 the PS one. However, both techniques provided very inter-
246 esting information on the behaviour of the landslides

Fig. 2 Velocity maps derived by PS- (a, b) and SBAS- (c, d) InSAR processing of Sentinel-1 SAR data acquired in ascending (a, c) and descending (b, d) tracks. Black circles indicate the areas most damaged by instability phenomena

Fig. 3 Difference between velocities obtained by SBAS and PS techniques in all the coinciding points

affecting the investigated slopes. Both PS and SBAS results show that in the most active sectors of the area the displacements measured from ascending dataset are positive, while the descending ones are negative, which means that a horizontal component from east to west is present. These results are consistent with the landslide kinematic which

mainly consist of superficial mass movements along the maximum slope direction, which has a dip toward the south-west of about 21° .

Considering the whole study area, the differences between the two techniques in the estimation of the displacements in the coinciding points are quite low (see Figs. 3 and 4) and caused by the different approaches. PS usually considers only a single pixel located in a building having an independent behaviour. Otherwise, SBAS measures a multilooked pixel which mediates the information of building with the surrounding area. In addition, SBAS includes a filtering step that makes the pixels spatially correlated.

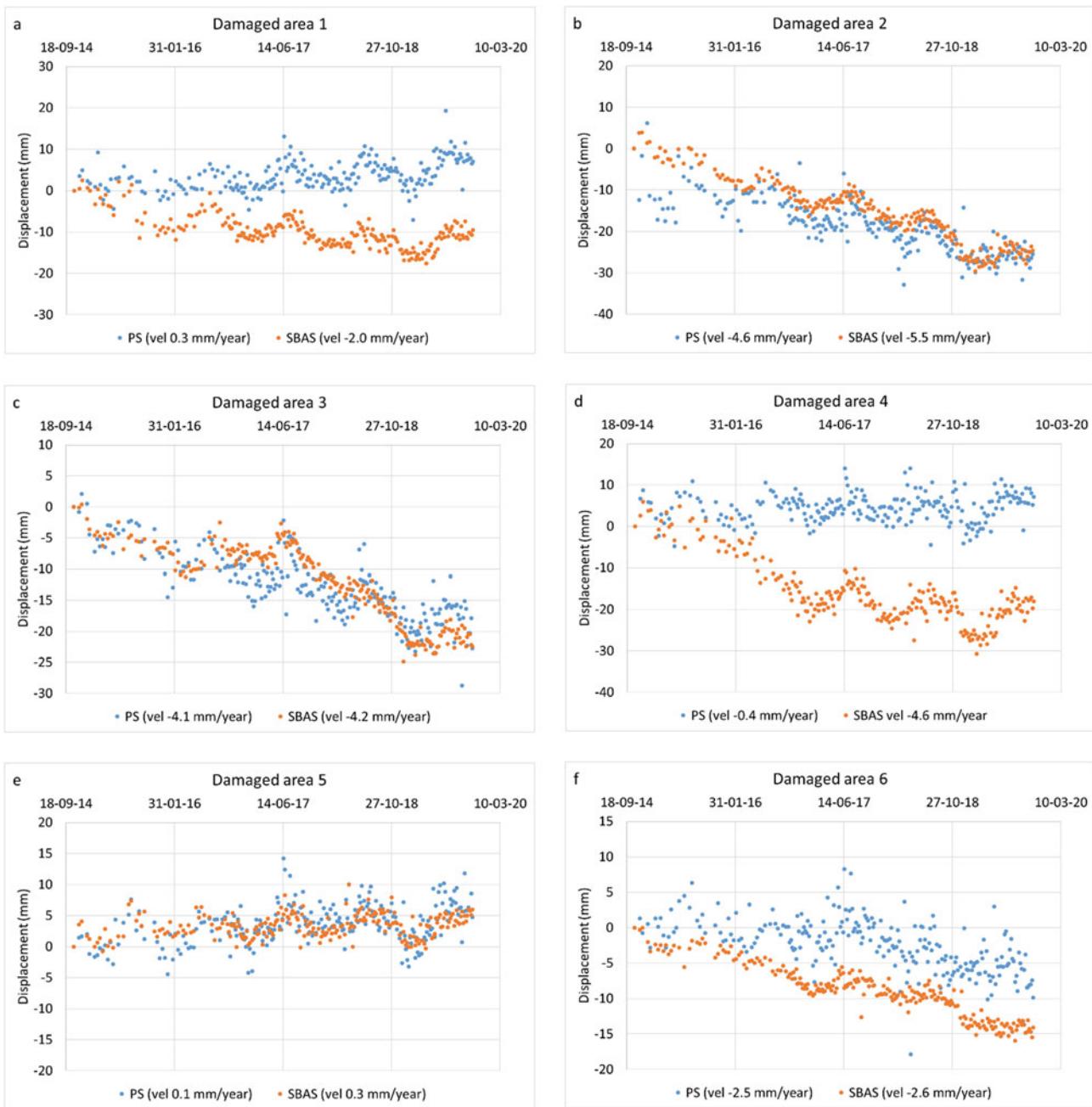
Analysing each landslide, we found significant differences in the mean velocity and its variability. In particular, velocities estimated by SBAS are higher and show high variability. In the case of PS, only urban areas which are generally located on flat or gently slope, were detected, while SBAS provides the deformation rates of also non-urban and steepest sectors of the landslides which are generally higher. For this reason, SBAS technique can be considered more effective than PS in detecting and monitoring landslide phenomena.

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

Table 1 Comparison between velocities estimated by PS and SBAS in landslide areas (ascending orbit)

Landslide		PS asc			SBAS asc		
Code	Area (km ²)	N. of points	Mean vel. (mm/y)	Std	Cover. (%)	Mean vel. (mm/y)	Std
0	0.100	53	0	0.5	100	-6.2	5.0
1	0.080	11	0.8	0.6	100	-6.0	3.6
2	0.080	8	1.7	0.9	100	-4.8	3.9
3	0.140	117	0.3	0.4	85	-4.1	4.4
4	0.020	4	0	0.6	77	-1.1	0.9
5	0.050	19	0.3	0.3	96	-3.1	2.5
6	0.500	220	3.4	1.3	90	-3.8	5.3
7	0.020	29	0.8	0.8	100	-2.2	1.5
8	0.002	0	-	-	100	-12.4	3.7
9	0.002	7	1.7	0.2	100	-7.9	3.0
10	0.150	28	0.8	0.3	94	-7.3	4.9

Table 2 Comparison between velocities estimated by PS and SBAS in landslide areas (descending orbit)


Landslide		PS desc			SBAS desc		
Code	Area (km ²)	N. of points	Mean vel. (mm/y)	Std	Cover. (%)	Mean vel. (mm/y)	Std
0	0.100	55	-0.6	0.4	96	-7.7	5.8
1	0.080	45	-0.2	1.3	100	-4.6	2.8
2	0.080	30	-2.7	1.2	100	-6.9	2.9
3	0.140	174	-2.1	1.1	79	-3.8	3.8
4	0.020	18	0.3	0.4	83	-0.2	2.4
5	0.050	39	0.3	0.6	85	-0.6	4.3
6	0.500	435	-5.2	2.3	89	-9.1	4.5
7	0.020	38	-0.4	1.7	100	-1.3	1.1
8	0.002	0	-	-	100	-5.5	4.4
9	0.002	8	-3.7	0.6	100	-6.5	3.2
10	0.150	80	-1.7	0.8	98	-2.0	3.3

Regarding the differences in the displacement time series obtained by the two techniques in the case of the damaged areas 1 and 4 (Fig. 4a and d), they can be due to the low frequency of acquisitions before the launch of Sentinel 1B satellite. The low number of SAR images can limit the potential of PS approach in detecting a non-linear trend of the displacement as occurred in the first part of the time series. Therefore, SBAS results should be considered more reliable.

Conclusions

In this study, we compared PS and SBAS InSAR techniques in monitoring shallow landslides affecting an area located in the north-eastern Italian pre-Alps. Both techniques provided

very useful information on the landslides. But SBAS has shown better reliability in landslide detection and monitoring because of the larger coverage of the results and the ability to measure non-linear deformation patterns. Mass movements are often characterized by seasonal oscillations or accelerations, in this case, SBAS can provide smoother and more detailed displacement time series, leading to deeper insights on the temporal evolution of instability phenomena. SBAS allows monitoring both the landslides and the deformations of structures and infrastructures due to such phenomena, which is crucial for the implementation of effective risk prevention and mitigation strategies. However, also PS technique can provide information on the main landslide characteristics, but the results are mainly limited to urban areas, so that it can be considered as a very useful tool for the monitoring of the elements at risk.

Fig. 4 Displacement time series derived by PS- and SBAS processing of descending Sentinel-1 data in the areas most affected by damages (location in Fig. 1)

309 In the next future, the obtained results will be integrated
 310 through ongoing GPS and terrestrial laser scanner surveys,
 311 to verify and, eventually, calibrate interferometry data and
 312 better understand the relationships between landslides and
 313 damages to anthropic structures.

References

Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. *IEEE Trans Geosci Remote Sens* 40(11):2375–2383

314
315

316

317

318

319

320 Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the
321 SBAS algorithm performance for surface deformation retrieval from
322 DInSAR data. *Remote Sens Environ* 102(3):195–210

323 Costantini M (1998) A novel phase unwrapping method based on
324 network programming. *IEEE Trans Geosci Remote Sens* 36(3):813–
325 821

326 Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides
327 and tectonic motions with the permanent scatterers technique. *Eng
328 Geol* 68(1–2):3–14

329 Crosetto M, Monserrat M, Cuevas-Gonzales M, Devanthery N,
330 Crippa B (2016) Persistent scatterer interferometry: a review.
331 *ISPRS J Photogramm Remote Sens* 115:78–89

332 Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate
333 estimation using permanent scatterers in differential SAR interfer-
334 ometry. *IEEE TGRS* 38(5):2202–2212

335 Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR
336 interferometry. *IEEE Trans Geosci Remote Sens* 39(1):8–20

337 Goldstein RM, Werner CL (1998) Radar interferogram filtering for
338 geophysical applications. *Geophys Res Lett* 25(21):4035–4038

339 Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004)
340 Dynamics of slow-moving landslides from permanent scatterer
341 analysis. *Science* 304(5679):1952–1955

342 Pasquali P, Cantone C, Riccardi P, Defilippi M, Ogushi F, Gagliano S,
343 Tamura M (2014) Mapping of ground deformations with interfer-
344 ometric stacking techniques. *Land Appl Radar Remote Sens*,
345 Holecz F, Pasquali P, Milisavljevic N, Closson D, IntechOpen.
346 <https://doi.org/10.5772/58225>

347 Tessari G, Floris M, Achilli V, Fabris M, Menin A, Monego M (2017)
348 Testing sentinel-1A data in landslide monitoring: a case study from
349 North-Eastern Italian pre-Alps. *Workshop on world landslide*
350 forum, 29 May–2 June 2017. Ljubljana, Slovenia, pp 209–217

351 Toaldo M, Tessari G, Monego M, Achilli V, Fabris M, Menin A,
352 Floris M (2016) Preliminary study of conditions influencing slope
353 dynamics in the area of Rovegliana (North-Eastern Italian
354 pre-Alps). *Rend Online Soc Geol Ital* 41:207–209

355 Wasowski J, Bovenga F (2014) Investigating landslides and unstable
356 slopes with satellite multi temporal interferometry: current issues
357 and future perspectives. *Eng Geol* 174:103–138

358 Zeni G, Pepe A, Zhao Q, Bonano M, Gao W, Li X, Ding X (2014) A
359 differential SAR interferometry (DInSAR) investigation of the
360 deformation affecting the coastal reclaimed areas of the Shanghai
361 megacity. In: *IEEE geoscience and remote sensing symposium*, 13–
362 18 July 2014. Quebec, Canada, pp 482–485

MARKED PROOF

Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

Instruction to printer	Textual mark	Marginal mark
Leave unchanged	... under matter to remain	✓
Insert in text the matter indicated in the margin	↪	New matter followed by ↪ or ↪ ^②
Delete	/ through single character, rule or underline ———— through all characters to be deleted	⊖ or ⊖ ^②
Substitute character or substitute part of one or more word(s)	/ through letter or ———— through characters	new character / or new characters /
Change to italics	— under matter to be changed	←
Change to capitals	≡ under matter to be changed	≡
Change to small capitals	— under matter to be changed	—
Change to bold type	~ under matter to be changed	~
Change to bold italic	~~ under matter to be changed	~~
Change to lower case	Encircle matter to be changed	≡
Change italic to upright type	(As above)	+
Change bold to non-bold type	(As above)	—
Insert 'superior' character	/ through character or ↪ where required	Y or X under character e.g. ³ or ³
Insert 'inferior' character	(As above)	↪ over character e.g. ²
Insert full stop	(As above)	○
Insert comma	(As above)	,
Insert single quotation marks	(As above)	Y or X and/or Y or X
Insert double quotation marks	(As above)	“ or ” and/or “ or ”
Insert hyphen	(As above)	—
Start new paragraph	—	—
No new paragraph	≈	≈
Transpose	—	—
Close up	linking () characters	()
Insert or substitute space between characters or words	/ through character or ↪ where required	Y
Reduce space between characters or words	between characters or words affected	↑